I am a last-year Ph.D. student in Telematics Engineering at Carlos III University of Madrid (UC3M) and a research assistant in the Networks Data Science Group at IMDEA Networks Institute under the supervision of Prof. Marco Fiore. During this period, I gained experience planning, implementing, and communicating computational research projects based on large-scale datasets. Also, I had the opportunity to collaborate with several academic researchers from different countries and major European industry players, such as Telefónica and Orange.
My research lines focus on remote sensing using mobile network metadata. With interest on:
However, I have always been passionate about everything related to Human mobility, Social disparity and inequality, Cities, Politics, and combinatorial optimization.
I was a visiting PhD student in the Social and Urban Networks Lab at the Network Science Institute in Boston, USA, under the supervision of Prof. Esteban Moro. We are working on how mobile apps can be used to predict election outcomes and polarization.
Previously, I did an Internship at Telefónica Innovación Digital between February 2023 and August 2024, supervised by Andra Lutu. During this period, we studied and measured energy-saving policies in the radio access network.
I like to be part of the community, and that motivates me to participate as TPC for PAM 2025, TPC shadow in ACM IMC 22, and TPC in the 1st IEEE Workshop on Quality of Data in Network Telemetry.
Also, as external reviewers for conferences and journals like:
In addition, I helped organize conferences such as PAM 2023 and Netmob 2023, and I participated in the Madrid Science Fairs of 2023 and 2024.
I supported Professor Marco Gramaglia as Teaching Assistant at UC3M in the Access Networks and Shared Media course for undergraduate students of Telematics Engineering & Sound and Image Engineering.
Some of my work has appeared in IEEE INFOCOM (x3), IEEE SECON (x2), ACM IMC, and IEEE/IFIP TMA. For updated bibliometrics, you can check my Google Scholar profile.
Talent Attraction grant - One-year Extension
More infoarrow_right_altIEEE International Conference on Computer Communications. London, United Kingdom. December 2024
Internet Measurement Conference. Madrid, Spain. November 2024
IEEE International Conference on Sensing, Communication and Networking. Phoenix, AZ, United States. October 2024
NetMob 2024. Washington, D.C., USA. October 2024
ACM SIGSPATIAL International Workshop on Geo-Privacy and Data Utility for Smart Societies. Atlanta, GA, USA. September 2024
For the first time in Cuba, we use Location Update records from the mobile phone network to generate origin-destination matrices in Havana. We used 15-days telecom anonymized data from 2020 to approximate trips identified as sequences of cellphone towers. We projected these trips over transport areas and municipalities, and showed the plausibility of the fluxes by comparing it with known behaviour of the city and data from census and work-home survey.
The search for binary sequences with low auto-correlations (LABS) is a computationally hard discrete combinatorial optimization problem. We explore two physically inspired algorithms to explore the low energy space of this model. The greedy, T = 0, Monte Carlo (MC) method gets trapped in the exponentially many 1-Spin-Flip stable configurations, that are typically low in energy, but still far from the global optimum. The more elaborated Warning Propagation (WP) algorithm also gets trapped in local minima. However, these local minima, are more stable to spin flips than the ones obtained by the greedy MC. We also compare the behavior of both algorithms in randomized versions of LABS, showing that the low energy space of the 4-Spin model is easier to explore than the one of LABS.
Los geógrafos han concertado esfuerzos con epidemiólogos, matemáticos, especialistas en ciencias de la computación, físicos, demógrafos… para conformar una obra cartográfica inusual, marcada justamente por la mirada multi- y transdisciplinar, con un enfoque espacio-temporal de la epidemia en La Habana, epicentro casi sostenido de la enfermedad en Cuba. La elevada conectividad entre todos los territorios que integran la provincia se convierte en factor de potencial trasmisión del virus; de ahí la mirada diferenciada a la que hay que recurrir y que de alguna manera se presenta en este texto.
Primera mirada al aporte de ciencia e innovación de la Universidad de La Habana al enfrentamiento a la COVID-19 desde una perspectiva multidisciplinar. […] El volumen que presentamos no implica el cierre de un proceso, sino el balance del trabajo realizado en un período inicial, en medio de la fragua continua de estos tiempos. Lo anima la propia vocación de servicio de sus autores: poner al acceso público, sin dilaciones, la obra investigativa e innovadora que se ha ido gestando para que fructifique, para que se convierta en conocimiento compartido, apropiación de un saber y una experiencia a emplear, incluso, más allá de las fronteras nacionales. Plasmar la germinación pronta, desatendiendo la ponderación sabia que permite la distancia crítica, es imperativo en estos momentos. Aquí quedan las huellas de la incertidumbre con que grava la epidemia; de la incompletitud en el desentrañamiento de la operatoria del SARS-CoV-2 y de la enfermedad que produce; del empleo de información estadística que no ha pasado por los «reparos» de rigor en las bases de datos… pero está la fuerza de una ciencia y una innovación de altísima profesionalidad, que también deja referentes en lo concerniente a experiencia, metodologías y sistemas de conocimientos, de validez presente y futura. Queda, asimismo, la construcción de una memoria, de tanta importancia para la propia ciencia, para la Universidad y la educación superior en general, y para la nación.